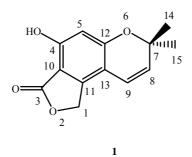
A New Furobenzopyranone from Anaphalis lactea


Ai Xia WANG, Fu Lin YAN, Zhong Jian JIA*

Department of Chemistry, National Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000

Abstract: A new furobenzopyranone, named anaphalisol, was isolated from the whole plant of *Anaphalis lactea*. Its structure was elucidated by spectroscopic methods including 2D NMR techniques.

Keywords: Anaphalis lactea, Compositae, furobenzopyranone, anaphalisol.

The whole plant of *Anaphalis lactea* Maxim. has long been used as a Tibetan medicine for invigorating the circulation of blood, relieving phlegm and hemostasia¹, however, its chemical constituents have not been previously investigated. In our research, a new furobenzopyranone was obtained from the whole plant of *A. lactea*. Here we report the structural elucidation of it.

Compound **1**, colorless gum, its FABMS gave quasi-molecular ion peaks at m/z 239.2 [M+Li]⁺ and m/z 255.1 [M+Na]⁺, combined with the peak of EIMS ([M]⁺ at m/z 232), the molecular formula of **1** was deduced to be C₁₃H₁₂O₄, which was supported by ¹H NMR, ¹³C NMR and DEPT data (**Table 1**). The IR spectrum (KBr) showed absorptions for hydroxyl (3528 cm⁻¹), α , β -unsaturated γ -lactone (1723 cm⁻¹), benzene ring (1635, 1600, 1464 cm⁻¹) and C-O-C bond (1335, 1152, 1046 cm⁻¹). Its ¹H NMR spectrum gave the typical signals of 2,2-dimethyl-chromene derivative at δ 6.15 (d, 1 H, 9.9 H_Z), 5.63 (d, 1 H, 9.9 H_Z), 1.46 (s, 6 H), two independent signals at δ 6.35 (s, 1 H),

^{*} E-mail:jiazj@lzu.edu.cn

Ai Xia WANG et al.

5.25 (s, 2 H) and a aromatic hydroxyl signal at δ 7.65 (brs, 1 H) which disappeared on addition of D₂O. ¹³C NMR and DEPT spectra revealed 13 carbons ($2 \times CH_3$, $1 \times CH_2$, $3 \times CH$, $7 \times C$) (**Table 1**). The signals δ_C 161.1, 157.6, 143.0, 108.6, 104.0, 103.9 (benzene ring) and δ_C 129.8 (CH=), 116.6 (CH=), 78.1 (C), 28.5 (2×CH₃), further confirmed the skeleton of 2,2-dimenthylchromene. Apart from the carbon signals corresponding to the above mentioned groups, the ¹³C NMR and DEPT spectra also displayed a carbonyl carbon at δ_C 172.5 and a oxygen-bearing carbon menthyene at δ_C 69.4, which could be due to a γ -lactone moiety, as followed by the molecular formula, the IR and UV ($\lambda \frac{CHCl_{3}}{max}$: 245nm) spectra. In addition, its HMBC spectrum gave the long-range correlations between δ_H 6.35 (H-5) with δ_C 161.1 (C-12), 157.6 (C-4), 108.6 (C-13), 104.0 (C-10); $\delta_{\rm H}$ 6.15 (H-9) with $\delta_{\rm C}$ 161.1 (C-12), 143.0 (C-11), 108.6 (C-13); $\delta_{\rm H}$ 5.25 (H-1) with δ_C 172.5 (C-3), 143.0 (C-11), 108.6 (C-13), 104.0 (C-10) (Table 1). Therefore, compound 1 was established and named anaphalisol. Moreover, compared the ¹H NMR spectrum of compound **1** with that of the known compound phthalidochromene², their structure's difference was the group at C-4, the phthalidochromene was OMe (§ 3.93), however, anaphalisol was OH (§ 7.65). As a result, the structure of anaphalisol was further elucidated.

Table 1 ¹H NMR, ¹³C NMR, DEPT data and HMBC correlations of 1 (δ, ppm, TMS, CDCl₃)

No.	¹ H NMR	¹³ CNMR (DEPT)	HMBC
1	5.25 (s)	69.4 t	C-3, 10, 11, 12, 13
3	-	172.5 s	-
4	-	157.6 s	-
5	6.35 (s)	103.9 d	C-4, 10, 12, 13
7	-	78.1 s	-
8	5.63 (d, J=9.9 Hz)	129.8 d	C-7, 9, 13, 14, 15
9	6.15 (d, J=9.9 Hz)	116.6 d	C-7, 8, 11, 12, 13
10	-	104.0 s	-
11	-	143.0 s	-
12	-	161.1 s	-
13	-	108.6 s	-
14	1.46 (s)	28.5 q	C-7, 8, 15
15	1.46 (s)	28.5 q	C-7, 8, 14
OH	7.65 (brs)	-	-

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 29972017).

References

- 1. Jiangsu New Medical Collage, *Chinese Medicine Dictionary*, Shanghai People's Publishing Press, China, **1977**, P. 1381.
- 2. J. Jakupovic, A. Schuster, H. Sun, et al., Phytochemistry, 1987, 26 (2), 580.

Received 1 September, 2003